
AD-A259 232

NPS-AS-93-005

NAVAL POSTGRADUATE SCHOOL
Monterey, California DTJCS EL ECT97N E

JAN6 1993. M

Prototyping with Application Generators:
Lessons Learned from the

Naval Aviation Logistics Command
Management Information System Case

l Tung Bui
Cheryl D. Blake
James C. Emery

(V)• October 1992

Approved for public release; distribution is unlimited.

Prepared for: Director of Information, OASI (C31),
Washington, D.C. 20301-3040

93 i7 Or r-;

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RADM R. W. West, Jr. Harrison Shull
Superintendent Provost

The report was prepared for the Director of Defense
Information, OASI (C31), Washington, D.C.. This research was funded
by DoD Washington Headquarters Services, IAD, The Pentagon,
Washington, D.C.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Tung X. Bui
Dept of Admin. Sciences

Reviewed by:

David R. Whipple, Chairman
Department of Administrative Sciences

Released by:

Paul J. Marto, Dean of Research

REPORT DOCUMENTATION PAGE O&o0-

Pulicr eortg burdnb Ius • d nkx in m etmaaed to ao.ele 1 zpnmigise wto average I hourepare iew,.
aridin *igtim radio edadi ari corroftng an rmveing the Iscllctio cd imib na Sencloonvnerairgarding 1w burden astmate or"Wi otm meectdI*acoleclimal
ir ý includi gg a for rediucing #w* burden. to Waaington Headaters Swoer Dimcit Ior " Operations and Reporms 1215 J PA 11w•ny.
Sui 12o4. ,Arlmt VAM-430. and lotie Ofie d Mmegument Budget. Pre ;w dcb Ptoe •'70o018M.W *mil DCZ5
1. AGENCY USE ONLY (LdBvhwJk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1992 Technical Report, 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Prototyping with Application Generators: Lessons Learned from the Naval
Aviation Logistics Command Management information System Case

6. AUTHOR(S) MIPR DXAM 20001

Tung X. Bui, Cheryl D. Blake and James C. Emery

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Administrative Sciences Department
Naval Postgraduate School NPS-AS-93-005
Monterey, Ca 93943

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING

AGENCY REPORT NUMBER

Director of Information
OASI (C31)
Washington, D.C. 20301-3040

11. SUPPLEMENTARY NOTES

Prototyping and Incremental Development, In-house Development, Application Generators, Use of

12a. DISTRIdUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (irnum1OcAords)

Prototyping with Application Generators:
Lessons Learned from the Naval Aviation Logistics Command Management Information System Case.

This study reports the lessons learned from the use of software application generators by the Navy
Management Systems Support Office (NAVMASSO) to develop a management information system to
automate manual Naval aviation maintenance tasks-NALCOMIS. With the use of a fourth-generation
programming language, NAVMASSO has been able to salvage an information system project that was
projecting cost and schedule overrun and experiencing management difficulties with outside developers.

14. SUBJECT TERMS 15. NUMBER OF PAGES

65
16. PRICE CODE

17. SECURITY CLASSIFICATION 1I. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-49)

PrwubKbANSSl2W•
Z0B102

CASE STUDY SERIES
ON IMPLEMENTATION PRACTICES OF
MANAGEMENT INFORMATION SYSTEMS
IN THE DEPARTMENT OF DEFENSE

Prototyping with Application Generators:
Lessons Learned from the
Naval Aviation Logistics Command
Management Information System Case

/

Tung X. Bui , Fr

Cheryl D. Blake
James C. Emery -

-1a

Department of Administrative Sciences
Information Technology Management Curriculum
Monterey, California

October 1992

Acknowledgments

The authors would like to thank Mr. Paul Strassmann, Director of Defense

Information, OASD (C31), for sponsoring the Case Study Series on effective use of

information technology in DoD. We greatly appreciate the Naval Air Systems Command

PMA-270 personnel for their support of this case study. Heartfelt thanks to the

NALCOMIS Program Office, Naval Aviation Atlantic, and Navy Management Systems

Support Office personnel for their unending patience, support, and encouragement,

particularly CAPT P. T. Smiley, USN, LCDR Galen Ledeboer, USN, LCDR Ron Allen,

USN, and AVCM Steve Shutler, USN.

We would like to thank Professor Sterling Sessions for sharing his interview

techniques, Professor Bala Ramesh for his comments, LT Christine Donohue, USN, and

LT MaryJo Elliott, USN, for their assistance with the case study format, and the officer-

students of the Computer Systems Management class of September 1992 at the Naval

Postgraduate School for their moral support.

It

ii

Table of Contents

Executive Summary . 1

II. Prototyping as a Development Alternative 7

A. Classical Development Methodology 7

B. Prototyping 9

C. Fourth Generation Languages 12

D. Evaluation Criteria 14

E. Summary 16

III. Transition to Prototyping: The NALCOMIS Case17

A . M ission 17

B. Key Organizational Players 18
1. Naval Air Systems Command PMA-270 18
2. Navy Management Systems Support Office 18
3. Type Commanders 19
4. Fleet Design Team 20
5. Fleet Design Review Group 20
6. Commander Operational Test & Evaluation Force 20

C. Background 20
1. NALCOMIS/I 20
2. NALCOMIS/Il 21

D. Functional Requirements of NALCOMTS/II................. 22

11i.i

E. Initial Development Strategy of NALCOMIS/III 24
1. Difficulties Encountered with the Classical Development

Approach 24
2. First Development Experience with NALCOMIS/III 26
3. Transition to Prototyping 27

IV. NALCOMIS/Ill: Prototyping with an Application Generator 31

A. Hardware Environment 31
1. Prototype Hardware 31
2. Operational Hardware 32

B. The Development Process 32

C. An Assessment of the NALCOMIS/III Prototyping Approach . . . 34
1. Software Development Status 34
2. Development Costs 36
3. Schedule 36
4. Testing and Evaluation 37
5. Training Adequacy 39

a. Programmers' Training 39
b. Users' Training 39

6. Management Effectiveness 40
7. Benefits Analysis 40

V. Lessons Learned 43

A. Dedication of Managers, Developers and Users is Crucial 43

B. Prototyping Enables Systems to Exceed "Pre-Defined" Functional
Requirements 43

C. Prototyping Allows Rapid Recovery from Faulty Software
Engineering Practices 44

D. Existing Operational Test and Evaluation Methodology is
Inappropriate for Evolutionary Development 44

E. Design Documentation Should be Updated to Reflect Evolving
System Design 45

iv

F. Management Must Provide a Proper Environment for

Prototyping 45

G. Application Generators Must be Carefully Selected 46

H. Software Development Contract Characteristics Should be
Reevaluated 46

I. Current DoD Hardware Acquisition Regulations Hinder System

Development 47

Appendix .. 49

Glossary of Terms 51

References ... 53

Bibliography .. 55

V

I. Executive Summary

Solving the Software Crisis

During the last decade, organizations have witnessed a phenomenon now known

as the software crisis. Software costs have spiraled dramatically, becoming the largest

item in information technology. Delivery schedules are seldom kept. As software grows

rapidly to meet more complex requirements, quality has become a non-trivial issue.

Department of Defense (DoD) organizations are not immune to this crisis. In

fact, in the wake of a declining budget and personnel reductions, there has been increased

pressure on DoD to develop innovative ways to solve their software problems. New

software engineering techniques are being explored to build information systems quickly,

correctly, and cost-effectively.

This exploration is critical since current DoD standards and policy have so far

favored systems to be built using a development methodology traditionally known as the
"waterfall' model. This methodology is systematic and sequential, with the output of one

phase acting as the input to the next. Although successful in some well-defined, highly

structured, large-scale projects, its inflexibility has been one of the major sources of cost

overruns, schedule slippage, and unsuitable end products.

Experience in the private sector has shown that prototyping is an alternative to the

waterfall methodology. With prototyping, developers explore user requirements,

experiment with ways to satisfy them, and enable the system design to evolve using a

working model. Prototyping is known to be suitable for developing systems where

S.. . . • m --(N N l m t / l l l I1

requirements are unclear, volatile, or cannot be communicated easily. Thanks to the

constant feedback with users knowledgeable in the business area, prototyping has been

successfully used to develop information systems that meet or exceed users requirements.

Furthermore, the adoption of new development tools - such as fourth-generation

languages (4GLs) - has increased software development productivity to the point that

it is now possible to accomodate the frequent changes required in an evolving

development process.

Shifting to Prototyping - Tie NALCOMIS Case

This case study reports the successful adoption of the prototyping approach by the

Navy Management Systems Support Office (NAVMASSO). With the use of a 4GL,

NAVMASSO has been able to salvage an information system project that was projecting

cost and schedule overruns and experiencing management difficulties with outside

developers.

The project involved is the Naval Aviation Logistics Command Management

Information System (NALCOMIS) program. NALCOMIS was established by the Chief

of Naval Operations (CNO) in 1975 to automate manual Naval aviation maintenance

tasks. NALCOMIS consists of three components. The first component was an existing

program renamed NALCOMIS/I. The second component, NALCOMIS/Il, was

developed under contract using the waterfall methodology and programming in COBOL.

When NALCOMIS/III began forecasting delays and cost overruns using the same

approach, program management looked for an innovative development approach to meet

budget and schedule. In April 1991, the program manager for NALCOMIS /II adopted

a prototyping methodology using an application generator.

2

NAVAMASSO Prototyping Methodology

The prototyping methodology at NAVMASSO consists of the following steps:

Form a Users' Team: A Fleet Design Team (FDT) consisting of experienced
aviat:oi maintenance personnel was appointed to work closely with the software
deveiopers.

* Establish In-House Development Teams: Contractors were replaced by five small
in-house development teams. These teams have been working closely with
experienced aviation maintenance users.

* Decomposition of To-Be System into Functional Subsystems and Development
Increments. NALCOMIS/III is decomposed in ten functional subsystems:
* Database Administration
* Flight
* Maintenance
* Logs and Records
* Personnel
• Asset
• Data Analysis
• Technical Publication
* Reports
• System Administration
Full functionality of the subsystems will evolve over five increments.

Gather Iterative Requirements: The FDT provides simulated paper screens and
interface requirements focusing on user friendliness and extensive on-line help.

Perform Quick Design: Devekers create screens and interfaces based on the
FDT input using a screen generator. The approved screens are then logically put
in sequence to provide users with a complete walk-through of the intended system
functionalities.

Build Prototype: Developers use a database-driven application generator to build
the prototype.

Evaluate and Refine Requirements: The FDT evaluates the prototype and
suggests corrections and enhancements.

Engineer Product: When the FDT is satisfied with the functionality provided by
the prototype, developers deliver the software to type commanders for testing.
When type commanders are satisfied with the product they release it to the

3

squadrons for use. The system evolves through an adaptive process that
eventually converges on a production version that closely meets the users' needs.

* Users Feedback: Squadrons make recommendations for software improvements
through the type commander.

Maintain Product: Using the same process used in the initial development, the
system continues to be adapted to changing user needs.

NALCOMIS/1H - Meeting Schedule Constraints and Exceeding
User Expectations

NALCOMIS/Ill increment 1 was developed in five months. It consisted of

157,000 lines of 4GL code for the prototype; the 4GL produced 2.3 million lines of C

code for the delivered product. Increment 1 included functionality for seven of the ten

subsystems. Performance of the initial release met or exceeded user requirements in 68

out of 71 instances. Overall, the product was much more acceptable to the user than any

NALCOMIS product they had seen before.

Increment 2 was completed five months later, enhancing or completing the

functionality for the same seven subsystems. Increment 3 will be implemented on

hardware from a production contract. Approximately 4.8 million dollars were spent on

the NALCOMIS/III prototyping effort. This accounts' for only 28 % of the $17.5M spent

on the entire NALCOMIS/III project. A team of 36 analysts, programmers, and users

was able to do what an organization of 85 to 100 contracted programmers with seven

layers of management was unable to do.

Increment 2 was subjected to Operational Test & Evaluation (OT&E) from March

to May 1992. Although the software functionality suffered only minor discrepancies,

increment 2 was judged not operationally suitable for full deployment. The evaluators

believe increment 3 is likely for full deployment on operational hardware.

NALCOMIS/Ill will be subjected to additional operational testing before

proceeding to a milestone III decision from the Department of Defense Major Automated

Information System Review Council (MAISRC).

4

Lessons Learned

The following lessons can be learned from the quick delivery of NALCOMIS/HI

increments I and 2:

0 Dedication and close cooperation among managers, developers and users is
crucial.

* Prototyping enables systems to exceed "pre-defined" functional requirements.

0 Prototyping is faster and less expensive than classic software engineering
practices.

0 Existing Operational Test and Evaluation methodology should be expanded to

accomodate evolutionary system development.

a Design documentation should be updated to reflect evolving system design.

0 Management must provide a proper environment for prototyping.

0 Application generators must be carefully selected.

* Software development contract characteristics should be reevaluated.

0 Current DoD hardware acquisition should be expanded to include rapid
prototyping and incremental development.

Although the NALCOMIS/III development project can be considered a successful

prototyping application, there were a few aspects of the program that could have been

smoother. Some of the difficulties could have been avoided by more preparation prior

to beginning the prototyping process. Some complications experienced found their roots

in difficulty in adapting the Navy development approval process to the rapid prototyping

methodology. DoD should implement policies and strategies that promote prototyping.

5

6-

II. Prototyping as a Development Alternative to
Classical Software Lifecycle

In today's climate of budget cuts, military programs must be able to do more with

less if they are to survive. For software development projects to be able to accomplish

this new standard of efficiency, a more cost-effective software development methodology

is required. This new methodology must take advantage of the best productivity tools

that current technology has to offer, and apply them in a manner that better adapts to a

rapidly changing and financially constrained environment. In many situations,

prototyping with application generators, of which fourth-generation languages (4GLs) are

a part, offers an opportunity to correct some of the major difficulties caused by the use

of traditional software development approach. This section briefly irtroduces the

prototyping concept by contrasting it with the widely used classical development

methodology. The readers familiar with these two approaches may skip this section.'

A. Classical Development Methodology

The classical life cycle methodology is the oldest and has been most widely used.

Also referred to as the "waterfall model", the classical methodology consists of six

phases. As shown in Figure 1, the methodology is systematic and sequential with the

output of one phase serving as the input to the next.2

'There are a number of software development methodologies reported in literature. Researchers
agree that there is no single best methodology to solve the software crisis. This report focuses on the
prototyping methodology.

2Pressman, 1987.

7

Prwogra-m-
Need

Justification

Are"Is•

~Unique

Design

Development

Vi&VdmW ("Aft - bd~g to d& iigju2)

V(utenance

Figure 1. The Classical Waterfall Development Methodology adopted from
Pressman, 1987.

0 Program Need Justification: Organizations explore the problem to be solved and
determine the most cost-effective resolution to the problem.

0 Analysis: Based on the decision to continue and the alternative selected, analysis
of the software requirements begins. This phase attempts to document the
information domain, required functions, performance, and interfacing needs of
the software. Hardware requirements are also determined based on the software
specifications.

* Unique Design: Often the approach to solving the problem is unique and must
therefore be designed from scratch. The design effort focuses on defining and
documenting data structure, software architecture, and procedural details.

* Code Development: The documents generated in the design phase serve as
references for the programmers during the code development phase. The

8

software resulting from the coding phase is only as good as the design documents
it is based on.

Testing: Once completed, the code is tested for correct logic and functionality.
Tests are first conducted on functional components and later those units are
integrated and tested again. Finally the software is turned over to users for
acceptance testing.

Maintenance: Assuming the code passes the testing phase, the software is
implemented and becomes operational. As the software is operated, the users will
discover bugs or desire enhancements/modifications to the functionality. The
maintenance phase of the life cycle is the process of adapting the software to
satisfy the new requirements or repair the problems.

While the waterfall model has proven to be appropriate for certain well-defined,

highly-structured, large-scale projects in the past, it is not suitable to every development

project. The underlying assumptions to the waterfall model are that user objectives are

known and fixed and the output from the previous phase in the development cycle is

complete and accurate. The consequences of making those assumptions, which are

certainly unrealistic in the majority of cases, are programs that exceed budget and time

constraints, and do not satisfy user requirements. The classical development approach

is very time consuming and often documentation intensive. Mistakes made during the

development process using the waterfall model are costly to correct. Infact, it is not

unusual to live with a non-critical design flaw rather than spend the money to correct it.

Invariably, the development approach does not work for several reasons. First,

and most obviously, requirements evolve over time in response to changes in the

environment and technology. Second, even with the best efforts, it is not possible for

users to define stable "requirements"; their perceived needs inevitably changes during the

course of building and using a system. Finally, if the requirements are well documented

and the business process is proven to be effective, often the lack of an appropriate

organizational structure to support software development becomes the issue.

9

B. Prototyping

ERequirementsEvauat

gathering .

Quic

Exploration BuEo
1prototype

E-xperimen~taton I Evaluate

& reflK W*

Figure 2. A Prototyping Development Methodology.

Prototyping is a method of developing a working model of the software or

software components of the system to be developed. The prototyping approach to

software development is perceived to overcome many of the shortcomings of the

traditional waterfall model discussed earlier. It lends itself to situations in which system

requirements are unclear, volatile, or cannot be communicated easily. As illustrated in

Figure 2, prototyping is an evolutionary approach to systems development that consists

principally of the following phases:

Gather Functional Requirements: The prototyping cycle begins with gathering of
users' known requirements and identifying areas needing further clarification.

10

Design: The system developers use the preliminary set of requirements to
perform a "quick design" of the prototype.

Build Prototype: The prototype is built and turned over to the customer for
evaluation.

Evaluate Prototype and Refine Requirements: There are no expectations to build
the right system the first time; rather, it is used to refine the initial requirements
of the users. The users evaluate the prototype for the necessary corrections and
enhancements. The cycle continues until users are satisfied with the functionality.

Engineer Product: As the requirements are determined they are recorded and the
product is built (either through refinements in the prototype system, or translation
ot the design into a production system written in a different programming
language).

The phases of the prototyping cycle shown in Figure 2 can be characterized as

exploratory, experimental, or evolutionary. The feedback from the quick design phase

back to the requirements gathering phase can be described as exploratory since the

purpose of this process is to extract user requirements where few formally exist. The

interaction between building the prototype and performing quick design is experimental.

The purpose of the prototype building phase is to explore alternative approaches to

building the software, testing novel design solutions under different environmental

conditions. The interaction between the evaluation process and the requirements

gathering effort reflects the evolutionary process that is the essence of the prototyping

methodology. This iteration makes it possible for the users' requirements to be

incorporated in the system specifications.

The following factors can contribute significantly to the successful application of

the prototyping methodology: 3

* Users knowledgeable in both the business and the prototyping process.

Prototype builders knowledgeable of prototyping approaches, supporting tools,
and the organization's data resources.

* Predetermination of data element definitions and user interface criteria.

3Vojtkowski, 1990.

11

Systems developed using the prototyping approach are expected to:

0 Provide a clearer definition of project boundaries and scope.

s Experience lower risk.

0 Be developed more quickly and less costly.

* Require less user training.

0 Promote smoother implementation.

* Be less costly to maintain.

C. Fourth Generation Languages

The iterative characteristic of prototyping requires the ability to quickly build and

modify application programs to be cost-effective. This ability generally cannot be

supported by third-generation languages such as Ada, COBOL or PL1, due to the

excessive cost and time required to make changes in 3GL programs. Fourth-generation

languages make it feasible to perform rapid prototyping.

There is no consensus as to what constitutes a fourth-generation language.

Products offered in the market often come under the general label of 4GL, but terms

such as application generator and integrated CASE (or I-CASE) tool are also used.

However, 4GLs are generally non-procedural languages, in that they allow a programmer

to specify what needs to be done rather than how to do it. Different 4GLs aim at

different intended users with different levels of technical sophistication, ranging from

inexperienced end-users to professional data processors developing highly complex

systems. Application generators employ 4GLs to facilitate building screens, reports, and

data stores.

12-

Ideally, a 4GL should possess the following characteristics:4

A language capable of defining the complete specification of a system, which can
then be translated automatically into a program for execution on a selected target
computer.

* A set of built-in language functions for defining the type of computational tasks
that occur frequently in MIS applications, such as creating screen formats for
interactive terminals, defining automatic error checks for input data, generating
reports or responses to user queries, and designing "user-friendly" interfaces
(e.g., a menu structure).

Language functions that permit terse specification of a computational task, often
best achieved through a nonprocedural language teat allows a programmer to
specify what task is to be accomplished rather than defining a how-to-do-it
procedure.Automatic consistency and completeness checking of a design
specification.

Integrated database management tools for managing the system's database.

An active central repository, with interactive retrieval capabilities that facilitate
access to selected information about the entire system.

* Integrated communication functions for controlling a telecommunications network,
handling remote terminals, transmitting data to and from other computers,
performing error checks on transmitted data, etc.

0 Facilities for managing a secure on-line environment, such as those for keeping
track of transactions in their various stages of processing, maintaining a journal
of all events within the system, and recovering from a system failure.

0 Facilities for integrating the new system with its environment (e.g., other existing
applications or network) and keeping track of multiple versions of an application.

* Integrated project management tools for scheduling and coordinating development
tasks as defined in the repository.

0 A set of design tools with a strong graphical orientation to aid the developer in
visualizing relations among system components.

0 An assortment of analytical and documentation tools for the support of sound
software engineering practices.

'Emery et al., 1991.

13

* Built-in testing facilities (e.g., for generating simulated test data and managing
regression testing).

* Capability of generating sufficiently efficient programs to permit the system to
handle a high volume of transactions at a feasible cost.

No product currently on the market satisfies all requirements; each of them

suffers from at least one of the following limitations:

• Requires a relatively long-term commitment to a single vendor due to the
proprietors (non-standard) nature of the product.

* Lacks the functionality to define a complete system within the 4GL's specification
language.

0 Incapable of integrating the various parts of the existing system.

0 Very expensive in terms of hardware requirements and/or software license fees.

* Inefficient in the use of machine resources.

• Immature, without a solid record of successes to lend credibility to the 4GL
approach.

0 Requires a significantly different approach to software design, and may thus
require several months for even an experienced developer to gain full knowledge
of their capabilities.

The situation is improving rapidly, however. Some powerful 4GLs are already

on the market and proving their worth in developing and maintaining a variety of large

MIS applications. Several of them are already valid contenders for use within DoD, and

new products or enhancements to existing ones are announced frequently.

The relationship of 4GL and prototyping is illustrated in Figure 3. Typical 4GL

applications have shown at least a ten-to-one increase in productivity over those using a

lower level language. Their non-procedural nature makes it easier to create and

manipulate data. The code is dialogue-like and, therefore, essentially self-documenting.

4GLs are also easier for programmers to learn and use. As a result, programming time

is reduced significantly. The rapid development so crucial to prototyping would not be

possible without productivity increases offered by 4GLs.

14"

Requirements
gathering

S Prototyping

Aply rototype Egne

m i[Product

Figure 3. A Hybrid Development Approach.

D. Evaluation Criteria

When evaluating 4GLs for a development project, the following list - although

not unique to 4GL - suggests some criteria to be considered.

Performance: refers to the evaluation of the benchmark timing tests. All times
should be specified in elapsed wall-clock minutes.

* Ease of Use: seeks to appraise the ease with the product can be used on a day-to-
day basis. It should take into consideration the skill level of the programmer or
user, but it does not include any Data Base Administrator (DBA) functions.

Ease of Administration: addresses the ease with which the product can be
administered. The primary considerations are installation, configuration, and
performance of typical administrative functions.

15

Documentation: is critical to software use and maintenance. Quality
documentation should be accurate, complete, organized, and easy to use.

Customer Support: evaluates the quality of assistance provided by the software
developers. It should reflect the accuracy of their information as well as the
timeliness and attitude of the technical support personnel.

Data Portability: encompasses data import and export capabilities.

* Software Portability: considers the different platforms that support the product.
It should be limited to those computers that have a direct applicability to the
processing environment.

* Effective Use of Resources: is a measure of the effectiveness with which the
product employs the computer's resources. The effectiveness should not be a
measure of efficiency. Instead, the effectiveness should be a subjective measure
of how well the product takes advantage of the capabilities of Operating System
and the features of the hardware. Of primary importance are disk space, system
memory, and CPU requiremaents.

E. Summary

Experience with 4GLs used in support of prototyping suggests that significant

productivity gains can be achieved to enable organizations to "do more with less." 4GLs

facilitate managing software applications by producing more consistent documentation

and reducing the time and effort required to develop, modify and maintain software

applications. Employed properly, prototyping supported by 4GLs should result in lower

development costs and a higher quality end-product for lower life cycle costs.

16

III. Transition to Prototyping: The NALCOMIS Case

This case study illustrates the use of prototyping in DoD. It reports the

experiences from the Naval Aviation Logistics Command Management Information

System (NALCOMIS) effort in developing an information system that automates the

maintenance procedures of Naval aviation units. This system, known by the sponsoring

command as NALCOMIS/Ill, is the third component of the entire information system

whose first two parts were developed under contracts using the classical development

approach. This section offers some factual background useful for understanding lessons

learned from the DoD prototyping effort with NALCOMIS/IIIV

A. Mission

In 1959, the Chief of Naval Operations established the Naval Aviation

Maintenance Program (NAMP) to integrate aeronautical equipment maintenance

procedures and related support functions. The NAMP distinguished three different

organization levels - individual squadron, headquarter level, and depot level - at which

aviation maintenance was to be performed based on the increasing complexity of

maintenance tasks. By assigning particular tasks to the appropriate levels, the Navy can

better achieve optimal use of resources.

The Naval Aviation Maintenance and Material Management (AV-3M) System (an

information system) grew out of the NAMP in 1965 as an attempt to modernize data

collection and information reporting for aviation activities. Because of the timeframe in

which AV-3M was introduced, the Navy had few technological resources to assist with

'Background information on the NALCOMIS program was obtained from Allen, 1988.

17

.this task. Therefore, the primary benefit AV-3M had to offer was the standardization

of the manual processes.

The NALCOMIS project, established by the Chief of Naval Operations in 1975,

was the next attempt at modernizing the aviation maintenance program. There are four

principle objectives for the system:

a Increase aircraft material readiness.

0 Improve the efficiency of aircraft maintenance and supply support organizations.

0 Improve the quality and timeliness of aviation data reported upline, and

* Reduce overhead labor and paperwork costs required to operate and execute the
NAMP at the local level.

B. Key Organizational Players

As depicted in Figure 4, there are many organizations involved in the

NALCOMIS project. Their roles and functions are briefly described below.

1. Naval Air Systems Command (NAVAIR) PMA-270

Located in Crystal City, Virginia, PMA-270 is responsible for management of the

overall program. This NAVAIR office enforces budget and schedule constraints while

ensuring that sufficient resources to adequately accomplish the development. The

Program Manager also has the responsibility to ensure continued congressional support

by successfully satisfying all Major Automated Information System Review Council

(MAISRC) requirements.

2. Navy Management Systems Support Office (NAVMASSO)

Located in Chesapeake, Virginia, NAVMASSO became the central design agency

for NALCOMIS in May 1984. This office initially acted as the Navy liaison between

the contractors and users. NAVMASSO has replaced the contractors as the developers

of the NALCOMIS/III.

18-

I • • " ' ' ' ' ' ' ' ' ' ' ' ' '"if., " '• •' ' '!.. !!

.1 1. I

Figure 4. Key Organizations Involved in NALCOMIS/III Development (arrows
represent communication channels)

3. Type Commanders

The Type Commanders are the high level organizations that represent the users.

There are five type commanders representing Atlantic, Pacific, and Reserve aviation,

Training and Naval Air Systems Command units. They are located in Norfolk, Virginia;

San Diego, California; New Orleans, Louisiana, Corpus Christi, Texas; and Washington

D.C.respectively. The Atlantic Type Commander invited the Second Marine Air Wing

(2nid MAW) located in Cherry Point, North Carolina to participate in the NALCOMIS/lil

development providing Marine Corps representation.

19

4. Fleet Design Team (FDT)

The FDT, comprising of senior enlisted aviation maintenance sailors and marines

from each of the type commands, is the user group that provides requirements and design

feedback to the developers. When the team is activated, these members are assigned

temporary additional duty at NAVMASSO.

5. Fleet Design Review Group (FDRG)

The FDRG, consisting of aviation maintenance officers at each of the type

commands, reviews all major decisions made by the FDT and provides additional

guidance.

6. Commander Operational Test & Evaluation Force
(COMOPTEVFOR)

COMOPTEVFOR performed the Operational Test and Evaluation for

NALCOMIS/III. The Program Manager chose COMOPTEVFOR to conduct the testing

because the organization was perceived to be the most proficient in the Navy at testing

software systems. COMOPTEVFOR specializes in testing weapons systems.

C. Background

NALCOMIS was to be developed in three main components with each

concentrating on a single organization level identified by NAMP. Automating one level

at a time would provide fleet users with an interim system until a fully NAMP

supportable system could be developed. In this report the different components will be

referred to as NALCOMIS/I, NALCOMIS/II, and NALCOMIS/Il.

1. NALCOMIS/I

NALCOMIS/I is a new title for an existing application previously known as the

Status Inventory Data Management System (SIDMS). SIDMS application was developed

on Harris H-300 hardware in 1981 under the design guidance of Commander Naval Air

20

Atlantic. The application was adapted to run on Shipboard Non-Tactical ADP Program

(SNAP) hardware in 1984 and renamed the NALCOMIS Repairables Maintenance

Module (NRMM). NALCOMIS/I is being used to support the Aircraft Intermediate

Maintenance Departments (AIMDs) and Supply Support Centers (SSCs) until

NALCOMIS is fully developed.

2. NALCOMIS/II

As with NALCOMIS/I, NALCOMIS/II is directed toward the intermediate level

activities and is intended to include the aviation maintenance functionality that was left

out of the supply-oriented NALCOMIS/I by providing automated data collection and on-

line data processing capabilities to the AIMDs and SSCs. The development chronology

of NALCOMIS/II is shown in Table 1. NALCOMIS/II, consisting COBOL programs

on Honeywell DPS-6s, was operationally certified in March 1989 - more than three

years after software testing began.

September 1985 Best-effort contract awarded to Eldon Associates6 for
NALCOMIS/Il & III development.

February 1986 NALCOMIS/II software testing began.

June 1986 User acceptance testing of NALCOMIS/II began at Marine
Aircraft Group 14 (MAG-14).

March 1989 NALCOMIS/II software was operationally certified.

Table 1. NALCOMIS/Il Development Chronology

"Fictitious name.

21

The development and implementation of NALCOMIS/II provided two important

lessons that have been applied to NALCOMIS/IIl. First, the importance of involving

users early in the development process became obvious when the contractor introduced

the software to the users and encountered high user frustration. Second, although it was

not realized until several months later, the inappropriateness of the waterfall development

methodology caused severe budget and schedule overruns. The difficulties encountered

with the adoption of the waterfall model will be discussed later.

D. Functional Requirements of NALCOMIS/HI

Just as NALCOMIS/II has automated the AIMDs, NALCOMIS/III is intended to

eliminate numerous man-hours spent on the manual collection, processing, and reporting

processes supporting aviation maintenance at the squadron-level.

NALCOMIS/II is expected to interface with NALCOMIS/Il, enabling the

automated exchange of information among the squadrons, AIMDs, and SSCs. The initial

analysis of NALCOMIS/Ill identified ten subsystems, as depicted in Figure 5. A brief

description of each of the subsystems follows:7

* Database Administration: provides system-level support tables of squadron
baseline, system security, and maintenance data.

* Flight: collects and processes flight-related data and provides these data to other
subsystems.

* Maintenance: collects and processes maintenance-related data and provides these
data to other subsystems.

* Logs and Records: establishes and maintains configuration profiles on aircraft,
propellers, engines, modules, and components assigned to the squadron.

0 Personnel: provides the ability to track specific information on selected personnel
assigned to the squadron.

* Asset: tracks information on survival, safety, and other aviators' gear allocated

7NAVMASSO Document J-004 FD-002B, 1992.

22

PERSONNEL

SUBSYSTEM

FADMINISTRATION Sse

STEMH ICA
SUBSYSTEMASE

t ~SUB•SYSTEMd

Figure5. NALOMIS/ITECHNssteAs

to the squadron.

* Data Analysis: provides analysts the ability to review and correct each flight and
maintenance record prior to extracting these records for a supporting system."

* Technical Publications: provides the ability to manage the squadron's assigned
aeronautical technical publications.

* Reports: generates predef'ned standard reports.

* System Administration: provides the system administrator the ability to maintain
the squadron's NALCOMIS system.

The developers did not build all ten functional subsystems at once. The)DT

prioritized subsystems, identifying those that would be required for an initial operational

23

system. Developers analyzed those requirements to determine if other functions were

necessary to meet the FDT specifications. Software packages were identified by

increment number to indicate the level of functionality to be included. There will be

several releases of the same increment in order to correct deficiencies, enhance

functionality and incorporate lessons learned from the prototype into the current release.

The fully functional NALCOMIS/IlI software will be developed over five increments.

E. Initial Development Strategy of NALCOMIS/III:
NALCOMIS/H Difficulties Revisited

As with many DoD management information systems, the waterfall development

methodology was used to build NALCOMIS/II and begin NALCOMIS/IIl.

1. Difficulties Encountered with the
Classical Development Methodology

Figure 6 illustrates the NALCOMIS/II development strategy. The need for an

automated system was justified by the need to eliminate time consuming manual tasks

required for aviation maintenance. Eldon Associates offered the lowest bid to develop

the system and won the contract for a duration of five years. The users provided their

requirements to NAVMASSO, which in turn determined technical feasibility and

interpreted the requirements to the contractor. The later completed analysis of the

problem by compiling a document of user requirements and started to design the system.

The design was communicated to the users two foot in a stack of documents called the

Functional Design Requirement Document. Upon the approval of the Type

Commanders, the contractor began coding and testing. One NAVMASSO employec

admitted that the NALCOMIS/II programs that were delivered did compile cleanly.

However, proper testing did not begin until the software was delivered to the Marine Air

Group (MAG-14). NALCOMIS/II software is currently in the maintenance phase.

24-

Eldon AssociatesAM"II
FODR

Figure 6. NALCOMIS/Il development.

The waterfall SDLC did not work. For several reasons enumerated below, users

experienced frustration with the new system:

0 Users provided minimal input during the requirement analysis phase. Once
requirements were documented, users were unable to provide feedback on the
overwhelming quantity of documentation.

* Design reviews, when they occurred, were held with upper management rather
than with the future system users.

& Coding was conducted off site by a third-party contractor using a third-generation
language (COBOL).

0 Adequate testing of the software was not conducted prior to implementation.
Numerous errors were discovered by the users during implementation. User
acceptance testing began after the software was installed at MAG-14.

25

Maintenance of the software (just to operationally certify NALCOMIS/Il) was so
costly it took three years and used the finances budgeted for both NALCOMIS/II
maintenance and NALCOMIS/III development.

The lack of user involvement throughout the NALCOMIS/II development process
proved too costly in terms of dollars and time.

2. First Development Experience with NALCOMIS/II

Since NALCOMIS/I and NALCOMIS/II were operational, remaining funds were

used to maintain them. In July 1987, the NALCOMIS program began experiencing

financial difficulty. As a result, the development of NALCOMIS/III was suspended

indefinitely. Because of cost overruns incurred by NALCOMIS/II, the development

effort for NALCOMIS/III did not resume until November 1990. At this time, as the

five-year contract with Eldon Associates expired, ActionWare8 -again, as lowest bidder

- won the NALCOMIS contract. The new contractor followed the development

approach initiated by its predecessor. Since the documents created by Eldon Associates

containing user requirements and system specifications for NALCOMIS/III were already

in place, ActionWare continued with the coding phase, using COBOL on the Honeywell

DPS-6 (SNAP I).

The program management had realized the importance of user involvement in the

system development process from the difficulties of NALCOMIS/II development. The

Program Manager sought user representation by asking each of the Type Commands to

send a representative to provide inputs to the contractor via NAVMASSO. Five senior

enlisted (E7-E9) personnel experienced with Naval aviation maintenance formed the Fleet

Design Team in November 1990.

Although the users now had an avenue to express their concerns, their comments

were not always incorporated in the development because they were filtered by

NAVMASSO before they reached the contractor.

Fictitious name.

26-

ActionWare used primarily COBOL for the application programs and

INFORMIX/DBMS for the database portions of the system. ActionWare estimated that

NALCOMIS/Ill Increment 1 would require one million lines of code to complete. The

contractor had access to the COBOL code that its predecessor had created during the

initial development stages. ActionWare intended to use C or the INFORMIX/DBMS

wherever COBOL could not be conveniently used. NAVMASSO employees began to

fear a hodge-podge of code that would be a nightmare to maintain.

In January 1991, management became aware that costs were growing, the

schedule was slipping, functionality began to shrink, too much time was spent negotiating

the terms of the contract, and the government/contractor/government turn-around was too

slow." Concerned by these events, and anxious to keep the implementation schedule,

the Program Manager was forced to devise a more cost-effective plan of action As a

first action, the DPS-6 minicomputer was replaced by the Bull DPX/2 micro-computers.

This was a practical move tu reduce hardware costs and eliminate the need for computer

rooms at all operational units. This move also resulted in establishing the UNIX

Operating System environment rather than the very proprietary General Comprehensive

Operating System (GCOS) that the DPS-6 used.

3. Transition to Prototyping with an Application Generator

The more NAVMASSO employees learned about the potential benefits of 4GL,

the more convinced they became that the task had a greater chance of being accomplished

with INFORMIX/4GL than with COBOL. ActionWare, however, showed no signs of

wanting to make the transition to the 4GL. This hesitancy may be attributed to the

resistance to disregard the sunk cost of the COBOL code already produced. ActionWare

claimed the application was 80 percent complete. NAVMASSO believes it was less than

50 percent complete of the stipulated requirements.

9Obtained from an interview with NAVMASSO employees on January 31, 1992.

27

In January 1991, the head of the NAVMASSO Aviation Systems Directorate

approached his Commanding Officer proposing to him to discontinue the NALCOMIS/III

development contract, and continue the effort in-house using INFORMIX/4GL.

A NALCOMIS Program Review was held at NAVMASSO on January 23, 1991.

Realizing the program was not progressing as it should, the Program Manager asked

NAVMASSO to investigate alternatives to deliver the NALCOMIS/III software on

schedule in August 1991. NAVMASSO identified the following alternatives, and their

respective potential repercussions:

* Alternative 1: Status Quo (i.e..-proceed with the current contractor), formally
estimated to cost $1.4M. NAVMASSO believes, however, that this avenue
would eventually lead to complete failure.

Alternative 2: Add funding (i.e., proceed with the current contractor with
additional funding to cover cost overrun); the total cost was expected to amount
to $1.8M. NAVMASSO believes, however, that additional funding would not
help in resolving current difficulties.

Alternative 3: Move NALCOMIS/II software maintenance from ActionWare into
NAVMASSO; leave NALCOMIS/III with ActionWare. This alternative would
cost $1.4M and cause a four to six month delay.

* Alternative 4: Move NALCOMIS/Ill from ActionWare into NAVMASSO; place
all NALCOMIS/Il coding with ActionWare. This alternative could be
accomplished within the current budget.

Alternative 5: Competitive development effort using NAVMASSO and
ActionWare. ActionWare proceeds as in Alternative 1; in parallel, NAVMASSO
proceeds as in Alternative 4. Progress of both efforts would be reassessed in
April 1991; best approach is continued, the other is canceled. According to
NAVMASSO. The cost of this alternative would be approximately $1.8M.

Choosing a 4GL to develop applications software would mean embracing a

methodology that deviates from common typical DoD practices. After some

consideration of the alternatives, the Program Manager got the approval from his

command for Alternative 4.

28

Since one of the primary justifications behind the replacement of the classical

development approach was time savings, it logically followed that rapid prototyping

would be the necessary development methodology. There was no time for developers

or users to glean requirements out of outdated documentation. The prototyping

methodology was chosen for NALCOMIS/III because it was perceived to offer the

greatest opportunity for the system to evolve within the given time constraints, overrun.

29

30

IV. NALCOMIS/III:
Prototyping with an Application Generator

A. Hardware Environment

1. Prototype Hardware
The NALCOMIS/III prototype was developed on the Bull DPX/2 Model 220

mini-computer with a UNIX operating system. The Central Processing Unit is a 32 bit

Motorola 68030 microprocessor with an operating speed of 25 Mhz. The DPX/2 has 16

MB of memory with two 675 MB Internal disks and a 150 MB internal streamer/tape

drive.

BI-LINK Portable microcomputers act as terminals. These 386 processors can

operate either as a NALCOMIS/III terminal or as a stand-alone personal computer.

BDS-7 dumb terminals and Zenith Supersport 286e Laptop computers are alternatives for

use as terminals. Some BDS-7 terminals have been implemented in squadron

workcenters due limited hardware resources; however, no lap-top computers have been

used as terminals.

Two types of printers are used with the prototyped system:

Impact Line Printer Model 970 used to print formal maintenance documents.

Screen Printer Model 4/22 used to print screen dumps and inormal working
copies of maintenance documents.

31

2. Operational Hardware

The operational hardware has not yet been determined. The initial Request For

Proposals (RFP) was issued on February 15, 1992. As of late August 1992, the contract

had not been awarded.

The RFP called for:'0

"a base configuration consisting of a computer functioning as a host utilizing a
POSIX compliant UNIX operating system. User workstations will be connected
via an Ethernet IEEE 802.3 10base5 Local Area Network (LAN), modem and
direct connection to RS-232-C ports."

The RFP also requires a live test of the existing application software and database on the

proposed hardware.

B. The Development Process

The application generator, INFORMIX/4GL was already in place as it

accompanied the INFORMIX/DBMS purchased during the initial stages of

NALCOMIS/JII development. The analysis and design for NALCOMIS/ILI had been

produced in the FDRD by Eldon Associates in 1986. However, requirements had

changed in the four-plus years since. Additionally, there was little time for NAVMASSO

to digest several thousand pages of documentation. NAVMASSO adapted a development

methodology they believed would allow a quicker, more accurate extraction of system

requirements. The prototyping process used for NALCOMIS/Ill development is

illustrated in Figure 7.

Gather Iterative Requirements: The FDT provided paper screens and interface
requirements focusing on user friendliness and extensive on-line help.

Quick Design: Developers created screens and interfaces based on the FDT input

"10Commerce Business Daily Weekly Release in January 1992.

32

Enine

Usoer InvoProdu

Fi e 7. NPrototyplng Process

functions

de~ ~ S I n u Id

pw ottyupeil

ExPeqirmenttsion T ef rT e teItny

sugse orcin an enhnceent and mtheccecniud

E E r ut Ion Pr odunct

Figure 7. NALCOn S/ba Prototype Development Methodology.

"using INFOpm IX/4GL.n The screens and interfaces eventually formed
functions.

0 Build Prototype: When sufficient functionality had been designed, a prototype
was built.

0 Evaluate and Refine Requirements: The FDT evaluated the prototype and
suggested corrections and enhancements and the cycle continued.

0 Engineer Product: When the FDT was satisfied with the functionality the
component became part of NALCOMI$/II.

No matter how competent the FDT is, such a small group cannot cover all aspects

"This process took minutes with INFORMIX/4GL compared to hours with COBOL.

33

of Naval aircraft maintenance. A larger, more extensive group would be more difficult

to manage when providing requirements to the developers. An extended group of users

known as "Alpha sites" (shore-based squadrons) provided additional insight to the

software developers after the FDT. Nineteen squadrons from all over the country and

representing all different types of aircraft and operations were identified to be the first

sites to implement increment 1. Five different operational sea-going (carrier-based)

squadrons were designated "Beta sites" to implement increment 2 along with the Alpha

sites. 12

S'ide-b-yi wadd mi NAVAIR
FMA-270

NALCOM I SeIm ODRG

'Tecn k sie wr iet fie sBta/ sie;o eve, henubrhdtbeeucdueoimite

harwar resources.xMads"u

-SyoklI.._ RemoTt, Tuning - Dw Tem 3Emulatki TUM
LDotumenft. -- DeoWTam 2

_ iav•OpmW Tom 1N

Figure 8. NALCOMIS/III Development Organization

"Ten sites were identified as Beta sites; however, the number had to be reduced due to limited
hardware resources.

34

The interaction of the organizations involved with the development is depicted in

Figure 8. Interaction between the FDT and the developers was constant. Major design

decisions were evaluated by the FDRG. The users represented by the FDT were not

involved at one stage of the development process; rather, they became part of the entire

development effort due to the iterative nature of the requirements gathering process.

This involvement would not have been possible without the rapid productivity provided

by INFORMIX/4GL.

C. An Assessment of the NALCOMIS/MI Prototyping Approach

- Current Status

1. Software Development Status

As of August 1992, NALCOMIS/IlI has completed software increment 1,

increment 2, and some of increment 3. Increment 1 included capabilities for database

administration, flight, maintenance, logs and records, asset data analysis, and reports

subsystems.13 Increment 2 enhances and completes the functionalities of increment 1.

Increment 3.0 has been developed except for hardware dependent modules. Those

modules are expected to be completed as soon the operational hardware becomes

available."4 Increment 1 was produced in five months and consisted of 157,000 lines

of 4GL code; the 4GL code generated approximately 2.3 million lines of C code.

NAVMASSO estimated the 4GL to be commensurate to approximately 1.4 million lines

of COBOL code using a nine-to-one equivalency ratio". Performance of the initial

release met or exceeded FDRG/FDT requirements in 68 out of 71 instances. Overall,

"In accordance with the Functional Description for NALCOMIS/1II some subsystems achieved their
full functional ities, while others were only partially implemented as scheduled at increment 2. See Figure
5.

1'The tardiness of the hardware selection is due to the very time consuming DoD procurement
process.

"Pressman suggests a ratio of ten or twenty-five to one may be more accurate.

35

the product was much more acceptable by the user than any NALCOMIS product they

had seen before.

2. Development Costs

Approximately $4.8 million was spent on NALCOMIS/HI development with the

prototyping approach. This only accounts for 28% of the $17.5M spent on the entire

NALCOMIS/III project.1 6 Thirty-one NAVMASSO employees"7 and five FDT

members were dedicated to the NALCOMIS/HI development effort. These individuals

were organized into teams as shown in Figure 8. They began building the application

in April 1991 after three weeks of training COBOL programmers in INFORMIX/4GL,

UNIX, and C programming language."8

3. Schedule

Started in April 1991, increments 1 and 2 and the majority of increment 3 are

completed 17 months later. Although the developers would have liked to have another

month, the teams met their first deadline in September 1991. A team of 36 analysts,

programmers, and users was able to do what an organization of 85 to 100 contracted

programmers with seven layers of management was unable to do. The schedule

continues to remain demanding.

The prototyping process led to a number of significant changes in the management

process, compared to the conventional waterfall methodology. The NALCOMIS

"`Of the $17.5M, $3.6M were spent for Eldon Associates, $.7M for ActionWare; other costs are
attributed to training, implementation, and other administrative costs.

"7Nine of the 31 individuals have been contracted from another government agency and work side-by-
side with the NAVMASSO employees. Six of the 31 have been contracted from a local civilian
consulting agency.

"INFORMIX/4GL generates C code. C is a third-generation language.

36

schedule was tight; too much time had already been spent and perceived as wasted by

trying to produce the system using the waterfall methodology. NAVMASSO believed

it would be counter-productive to salvage previously documented requirements and design

specifications. Since the FDT member often sat next to the programmer providing

alternative solutions as they went, requirements could change five or six times within an

hour. Furthermore, as requirements evolved, there was no time to incorporate them in

the existing documents. The command decided to start over with the new development

paradigm. Although user manuals and program and system specifications are updated

regularly, design documentation is not. The impact of the lack of design documentation

on the NALCOMIS program has yet to be determined.

4. Testing and Evaluation

Initially the program was scheduled for MAISRC Milestone 3 review in April

1992, with a cost-benefit analysis and a favorable Operational Test & Evaluation

(OT&E)."9 As the only increment available at that time, increment 1 was subject to

OT&E in January 1992. Conducted by COMOPTEVFOR, OT&E ended within a week

with a "deficiency" rating because of unsatisfactory operational effectiveness and

suitability. Increment 1 refused input, provided erroneous output, and locked-up during

busy processing periods. As a result, MAISRC Milestone 3 was tentatively rescheduled

for July 1992.

OT&E resumed with increment 2 in March and ended in May 1992.

COMOPTEVFOR determined that NALCOMIS/III was "operationally effective but not

operationally suitable". Since increment 3.0 will be implemented on new operational

hardware, the evaluators determined NALCOMIS/III to be "potentially operationally

suitable with increment 3.0". It is important to note that COMOPTEVFOR was

evaluating NALCOMIS/III against the Mission Needs Statement for the final hardware

requirements and other standard checklists without consideration of the incremental

"1See NAVDAC PUB 24.2 for a description of MAISRC Milestones.

37

development approach being employed for NALCOMIS/III development.

As a result of the rapid development promoted by the 4GL, increment 2 had many

capabilities that were not planned to be introduced until as late as increment 5.

Users responded to the Chief of Naval Operations with fervent support of the software,

explaining that "to date, NALCOMIS/III has, in virtually every respect, outperformed

(the users') greatest expectations," and "fleet/squadron enthusiasm for the achieved

benefits already far outweighs any shortcomings... 20 Another user group regarded

NALCOMIS/III increment 2 as "an unsurpassed string of successes"."2 The OT&E will

be updated in late 1993. MAISRC Milestone 3 has been tentatively rescheduled for early

1994.

5. Training Adequacy

a. Programmers' Training

The alternative chosen by the Program Manager required the developers to be

knowledgeable in INFORMIX 4GL, UNIX, and C. NAVMASSO had no resident

expertise in any of these areas. The prior approach required COBOL programmers and

so there was an abundant supply of knowledgeable COBOL programmers. NAVMASSO

programmers, though somewhat familiar with INFORMIXI4GL, had to become

proficient in that language, as well as the C code generated by the 4GL and the UNIX

Operating System, if they were to complete the coding effectively and efficiently.

The Program Manager funded training for all NAVMASSO employees involved

in the NALCOMIS development - from managers to programmers - in UNIX,

INFORMIX, and C. The developers spent three weeks in formal classroom training.

'Commander Naval Air Atlantic message to Chief of Naval Operations dated 23 July 1992.

"21Commander Naval Air Pacific message to Chief of Naval Operations dated 29 July 1992.

38

Additionally, PMA-270 hired an INFORMIX consultant to be involved in the

programming effort. Initially the consultant was on site at NAVMASSO full time,

providing assistance to the programmers as they hit snags in their coding. The time he

spent physically at NAVMASSO grew less and less, and after five months he was only

used on an on call basis. Although the consultant's expertise was expensive,

NAVMASSO employees assessed this assistance as an invaluable contribution to the

projects success.

Even though no one had experience in UNIX or C, the training time for 4GL was

found to be much less than required frr a typical third-generation language. The ease

of training can be partially attributed to the English-like nature of the language. Another

reason for training success was the skill level and background of the programmers

involved in the project.

b. Users' Training

Implementation of the prototype at the Alpha and Beta sites proved that one to

two weeks of "over-the-shoulder" training was adequate for system users.

COMOPTEVFOR determined the System Administrator training to be inadequate during

the OT&E, as most System Administrators lacked the basic skills to trouble shoot even

minor problems. When a new site is implemented, the designated System Administrator,

usually an E6-E7 aviation maintenance administration specialist with minimal computer

experience, receives two weeks of formal classroom training. A formal System

Administration course is currently being updated to provide training in diagnosis,

troubleshooting, and repair of hardware and LAN-related problems.

6. Management Effectiveness

The NALCOMIS/III development organization, illustrated in Figure 8, consisted

of seven teams of three to four programmers. Initially, no individual team leaders were

appointed in keeping with Total Quality Management (TQM) philosophy. In most

39

instances, the lack of a team leader was detrimental to the effort; eventually leaders

emerged, and were later formalized by management.

NAVMASSO employees assigned to the NALCOMIS/III development effort were

well-educated, dedicated professionals. Their sense of dedication and high morale were

critical to the successful application of the prototyping technique, especially since

milestones were scheduled with very little flexibility. Since NAVMASSO was aware of

the risk that the NALCOMIS program could be eliminated for not meeting the expected

milestones, demanding work hours were necessary. Overtime was abundant; leave was

scarce. If these conditions persist, morale could suffer and lead to distressing effects on

future NALCOMIS/HI development and software maintenance.

7. Benefits Analysis

According to a study conducted by an office independent from NAVMASSO,

NALCOMIS/III would provide between $105K and $195K in savings per aircraft

squadron per year, primarily from reduced manual labor.22 The study also projects a

total potential savings of $249M to $696M through the year 2008.

Most important, early use of the system suggests that NALCOMIS/LIl does

improve the management decision-making process by providing the following functional

enhancements:

* Improved data collection and accuracy.

0 Improved technical publication control and updating.

• Improved tracking of technical directive information.

0 Improved identification of recurring maintenance problems.

* Improved pilot/aircrew flight data reporting/record keeping.

0 Improved standard asset management at the squadron level.

• Improved configuration control of aircraft, installed engines, components, and

"Office of Technical Assistance, December 1991.

40

support equipment.

Improved maintenance through automated tracking of aircraft and support
equipment scheduled maintenance.

Improved upline management information through timely automated data from
squadron detachments.

Full mission capability of aircraft is expected to increase from 1.18 to 1.94
percent due to improved supply response and reduced administrative delay time.

41

42

V. Lessons Learned

A. Dedication of Managers, Developers and Users is Crucial

The early success of NALCOMIS/III can be attributed to the unprecedented

dedication of managers, developers, and users. The Program Manager open-mindedly

explored new, unproven software development approaches to salvage a badly flawed

program, turning NALCOMIS into a potential Gold Nugget success story. The

Commanding Officer and staff of NAVMASSO took an unprecedented risk in attempting

the development in-house with unfamiliar technology, proving that the government has

far more than adequate resources and skill to develop its own systems. The users,

despite the demanding jobs and work hours, committed themselves to providing the

necessary detailed expertise required to make the system a useful, helpful tool. Their

efforts were an essential contribution to the projects success. Most importantly, each

organization recognized and respected the benefits each group had to offer and worked

together to get the job done right.

The development of human resources is a critical aspect of a projects success.

The training program made available to the developers was essential to their

effectiveness. The support provided by a consultant expert in the new technology was

also a substantial help.

B. Prototyping Enables Systems to Exceed "Pre-Defined"
Functional Requirements

Although the five increments of NALCOMIS/III were defined in the Functional

Design documents, rapid prototyping with a 4GL has enabled some increments to exceed

43

intended functionality. For example, squadron work centers were not scheduled to be

implemented until increment 5; however, the need to include the work centers sooner

became evident upon implementation of the Alpha sites. Prototyping with an application

generator made it feasible to develop the increased functionality.

C. Prototyping Allows Rapid Recovery from Faulty Design

Prototyping allows for rapid correction of design errors. Under the pressure to

quickly deliver an initial product, the NAVMASSO prototyping team made some initial

errors in disregarding vocabulary conventions and applying consistent user interface

procedures. Even when the mistakes were discovered late during the implementation of

test sites, they were corrected in the next release. Another instance of such a correction

had to do with the access security. No discretionary access control had been formally

defined to prevent unauthorized acts, but this oversight was rectified in the subsequent

version. once the problem surfaced during the design of an early ,. ersion.

D. Existing Operational Test and Evaluation Methodology is
Inappropriate for Evolutionary Development

Although there is a requirement for Major Automated Information Systems to

successfully complete an Operational Test and Evaluation, the current OT&E strategy

does not adapt to the incremental prototyping approach. The hardware used for the

prototype was not - by intention - the operational hardware. The deficiencies found

with the hardware during OT&E should not be considered as critical to the evaluation

of the software being tested and evaluated.

Additionally, prototyped systems may be introduced to the users with partial

functionality. These systems should be tested against the currently recognized user

requirements instead of preconceived design specificatiions.

44

E. Design Documentation Should be Updated to Reflect Evolving
System Design

The importance of design documentation in performing maintenance on

operational systems cannot be overstated. Maintaining current documentation when

designs can change several times a day is impossible. It is probably unnecessary as well

since a 4GL specification is largely self defining. Once a design becomes relatively

stable, other documentation can more easily be brought up to date. The problem is likely

to be substantially relieved in the future through the automatic generation of

documentation by such tools as I-CASE products in the future. Until the time when such

tools are available, however, documentation of user-driven changes on system functional

requirements needs to be updated routir.ely and later integrated into the OT&E process.

F. Management Must Provide a Proper Environment for
Prototyping

The rapid development enabled by INFORMIX/4GL also created some

configuration management problems. As errors, modifications, and enhancements were

reported back to developers, programmers would use the copy of the software that had

been current earlier that day, or the day before, to make the changes. Since

modifications to the software could be made so quickly with the 4GL, the developers

often found the release they had loaded on their system only hours before was already

out of date. Old bugs were reintroduced during functional testing. The developers did

understood the problem after a few incidents of this type, but configuration management

remained difficult due to the rapid modifications.

No widely accepted standards for programming with a 4GL exist to date.

NAVMASSO dealt with the lack of formal rules by establishing the database before

programming began. Meetings were held to standardize data elements and variable

names. This practice proved a valuable time saver. However, lack of standards in other

areas such as backing out of screens and system error messages was a problem for users.

45

Standard interface principles (e.g., always using the F1 function key to back out of a

screen) can and should be established prior to the prototyping process. Testing and

debugging need to be performed in a systematic and integrated manner to avoid

uncontrolled multiplication of versions. Maintenance should be done on the integrated

software and not on the functional components.

G. Application Generators Must be Carefully Selected

When developers choose to build applications with COTS application generators,

they should allocate adequate time to evaluate and select the appropriate software/tool for

the task. INFORMIX/4GL has been adopted defacto in NALCOMIS/Ill with no formal

evaluation. NAVMASSO staff viewed INFORMIX/4GL as a consistent extension of the

DBMS module of INFORMIX, which was thoroughly evaluated. Although

INFORMIX/4GL has proven suitable for this application, a formal evaluation and

selection process would have been required to ensure the appropriateness of the 4GL.

Some evaluation methods for selecting COTS are suggested in the Appendix.

H. Software Development Contract Characteristics Should be
Reevaluated

Both contracts awarded in the NALCOMIS program were five-year, lowest-

bidder, best-effort contracts. DoD outsources the development of many large MIS

projects that could require more than five years. Replacing contractors part way through

development is a risky practice. Lowest-bidder contracts are acceptable when every

detail of the task at hand can be stipulated in the contract. MIS development contracts

cannot usually be so clearly defined. Rather than trying to anticipate every detail and

hiring contractors to give their "best effort", a more flexible contract stipulating the final

deliverable is appropriate in MIS development situations.

46

I. Current DoD Hardware Acquisition Regulations Hinder
System Development

The hardware acquisition process mandated for DoD purchases of computer

system hardware is prone to problems. Great care and time must be spent to develop the

Request For Proposals (RFP) to ensure the wording does not inappropriately narrow the

field of potential bidders. However, even the most carefully worded RFPs fall subject

to protests, tying the acquisition process up in rewrites, negotiations, and legal battles.

NALCOMIS/III is no exception. Regulations pertaining to hardware acquisition impede

the effective use of the prototyping process.

47

48

Appendix. Evaluation Methods for Selecting
Commercial-Off-The-Shelf (COTS) Software

In situations where one alternative is not clearly superior to the others, we must

evaluate the options for the most appropriate choice. If the alternatives are all equal, the

selection can be random. However, that is rarely the case. There are three criteria that

will guide our decision making process. They are maximum available budget, minimum

performance requirement, and maximum effectiveness/cost ratio. Considering budget

allowance and performance criteria in isolation may lead us to choose the wrong

alternatives. Considering the maximum payoff per unit of investment will generally lead

us to a more acceptable solution. The following discussion will explain some methods

that consider this criterion.23

1. Net Value Analysis

One method of rating the alternatives is to estimate the dollar values for each of

the criteria. There are two levels of analysis to estimate these values. The first method

is to use a rough estimate of the value of that criterion. Although this assessment is

quick, it may be superficial and hard to justify. A more detailed assessment can be

acquired by analyzing the number of times a particular attribute will be needed and the

amount and value of the resources saved by the quality. Although this more thoughtful

analysis will result in a more defensible estimate, the required effort is more significant

than the former alternative. How much time spent analyzing the alternatives should

depend on the cost difference of the options to be considered.

'Boehm, 1981.

49

2. Figure-of-Merit Analysis (Weighted Sum Technique)
The Figure-of-Merit technique is an attempt to assign a dimensionless value to

each option. The option of choice will be the alternative with the higher figure-of-merit.

The following steps depict the weighted sum technique.

* Assign a set of weights to the criteria that will determine a ranking of importance.

0 Rank each of the criterion on how well the alternative satisfies the criterion.
(Usually a value from 0 to 10.)

0 Multiply the rating by the weight.

0 Sum the weighted ratings for each of the alternatives.

Although this approach allows us to stress the criteria which are most influential, it is

very sensitive to the weights and ratings we assign.

3. Delivered System Capabilities (DSC) Figure-of-Merit

DSC = SC*DC*AV

where:

* System capability (SC) is defined as a hierarchical weighted sum of individual
criterion ratings (equation)

* Delivered capacity (DC) is defined as the actual computer capacity which can be
used to provide the desired capabilities.

• Availability (AV) is defined as the fraction of time that the computer system is
available to deliver computer capacity to perform the functions. Thus AV
excludes time spent on preventive maintenance or system down time.

The DSC approach considers the multiplicative effects of delivered capacity and

availability, m -Leas the weighted sum approach considers them additive.'

I'here exists other Multiple Criteria Decision Methods (MCDM) that could be used for product

selection.

50

Glossary of Terms

4GL - Fourth Generation Language

AIMD - Aircraft Intermediate Maintenance Department

APPLICATION GENERATOR - software enabling the creation of application
programs based on user provided requiiements.

AV-3M - Aviation Maintenance and Material Management System

CASE - Computer Aided Software Engineering

COBOL - Common Business Oriented Language

COTS - Commercial Off The Shelf

DBMS (DATABASE MANAGEMENT SYSTEM) - A set of programs that are used
to define, process, and administrator the data base and its applications.

DoD - Department of Defense

END-USER - A collective term used for anyone who uses data and applications to
provide information.

FDRD - Functional Design Requirements Document

FUNCTIONAL AREA - Any area within an organization that has a definable set of
tasks.

HARDWARE/SOFTWARE ARCHITECTURE - A framework to provide the
processing power needed to run applications that will generate and distribute
information.

INFORMATION SYSTEM - Activities and resources concerned with the creation,
gathering, manipulation, classification, storage and transmission of elements of
information.

I-CASE - Integrated Computer Aided Software Engineering

51

IMA - Intermediate Maintenance Activity

INFORMATION DOMAIN - refers to that data which are relevant to functions of a
MIS.

MAG - Marine Corp Aircraft Group

MAISRC - Major Automated Information System Review Council

MIS - Management Information System

NALCOMIS - Naval Aviation Logistics Command Management Information System

NAMP - Naval Aviation Maintenance Program

NAVMASSO - Navy Management Systems Support Office

NRMM - NALCOMIS Repairables Management Module

OMA - Organizational Maintenance Activity

OT&E - Operational Test and Evaluation is the process of verifying software meets
all specified requirements. This process is required for MAISRC Milestone 3.

PMA - Project Manager Air

PROTOTYPING - The cyclical process of developing working models of software.

SNAP - Shipboard Non-Tactical ADP Program

SSC - Supply Support Center

TQM - Total Quality Management also referred to as Total Quality Leadership.

WATERFALL MODEL - a sequential, structured software development
methodology

52

References

Allen, Ronald T., NALCOMIS/OMA: Functional Considerations for Automating
Organizational Maintenance Activities, Master's Thesis, Naval Postgraduate
School, March 1988.

Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc. Englewood
Cliffs, New Jersey, 1981.

Emery, James C. and McCaffrey, Martin J., "Ada and Management Information
Systems: Policy Issues Concerning Programming Language Options for the
Department of Defense", Department of Administrative Sciences, Naval
Postgraduate School, Monterey, California, June 1991.

Navy Data Automation Management Practices and Procedures, Systems Decisions,
NAVDAC PUB 24.2.

Navy Management Systems Support Office, "Functional Description for
NALCOMIS/III", NAVMASSO Document J-004 FD-002B, 1 April 1992.

Office of Technical Aszistance, NALCOMIS OMLA Benfit Analysis Plan, 90056-03-
NAVY, December 1991.

Pressman, Roger S., Software Engineering: A Practitioner's Approach, Second
Edition, McGraw-Hill Book Company, 1987.

Whitten, Bentley and Barlow, Systems Analysis and Design Methods, Second Edition,
Irwin, Homewood, Illinois, 1989.

Wojtkowski, W. Gregory and Wita, Applications Software Programming with Fourth-
Generation Languages, boyd & fraser publishing company, 1990.

53

54

Bibliography

Alavi, Maryam, et al., "Strategies for End-User Computing: An Integrative
Framework", Journal of Management Information Systems, 4, 3, Winter 1987-
1988.

Buckler, Grant, "Users Take Note: Once the Plunge is Made, You're Locked in",
Computing Canada,February 14, 1991.

Chartley, Steve, "Tackling the Application Software Crunch: 4GLs in a Client-Server
Environment a Good Way To Go", Computing Canada, November 22, 1990.

Desmond, John, "On Living 4GLs, GUI Training, UI March", Software Magazine,
April 1991.

Dowling, Richard, "Application Generators are Forcing Wise Use of Reusable Code",

Computing Canada, February 14, 1991.

Golick, Jerry, "Time to Return to Basics", Computing Canada, March 14, 1991.

Hanna, Mary Alice, "Prototyping Helps Users Get Design Satisfaction", Software
Magazine, April 1991.

Howard, Keith, "4GL vs. 3GL - A Debate Rages without Meaning,"
Computerworld, December 3, 1990.

Pliskin, Nava, and Shoval, Peretz, "End-User Prototyping: Sophisticated Users
Supporting System Development", Data Base, Summer 1987.

Schaffer, Evan and Wolf, Mike, "The Next Generation", UNIX Review, March 1991.

Tessier, Douglas, "MIS's Handling of 4GLs Mixture of Struggles and Fatal Flaws",
Computing Canada, February 14, 1991.

Kador, John, "4GLs from the IS Manager's Perspective", System Builder,
August/September 1990.

55

Livingston, Denn, "How Integrators Choose 4GLs", Systems Integration, July 1991.

Miles, J.B., "4GLs and CASE," Government Computer News, January 7, 1991.

"The Nature of 4GLs", Systems Builder, June/July 1989.

56

Distribution List

Agency No. of copies

Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

Dudley Knox Library, Code 0142 2

Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration 1
Code 08
Naval Postgraduate School
Monterey, CA 93943

Library, Center for Naval Analyses 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Department of Administrative Sciences Library 1
Code AS
Naval Postgraduate School
Monterey, CA 93943

Director of Information 10
oASI (C3D)
Washington, D.C. 20301-3040

Tung X. Bui 10
Code AS/Bd
Naval Postgraduate School
Monterey, CA 93943

